מתי דוד

חשמל, אלקטרוניקה,
מכטרוניקה, מכשור ובקרה

ספר זה נכתב ע״מ לעזור בהבנת תהליכי הבקרה הנלמדים בבתי ספר להנדסאים ובמכללות. הספר מכיל הסברים מקיפים לכל נושא ולאחר מכן מוצגים עשרות רבות של תרגילים ופתרונות מלאים. רמת הלימוד והדוגמאות בספר מתאימה להכנת הקורא למבחני מה״ט בתורת הבקרה, במערכות אלק׳ פיקוד ובקרה, ויסות ובקרה וכד'.

הלומד נדרש להכיר את המקצוע תורת החשמל כמקצוע קדם לתורת הבקרה וכמו כן עליו להכיר ברמה טובה את הנושאים המתמטיים הבאים: מספרים מרוכבים, משוואות דיפרנציאליות והתמרות לפלס.

עשיתי כמיטב יכולתי להגיש לכם ספר נקי מטעויות, אך בוודאי יתכנו טעויות או הערות לספר זה. אקבל בשמחה הערות ותיקונים שיש לעשות לפי דעתכם בספר. אנא שלחו אלי תגובה בדואר אלק׳:

matidavid@hotmail.com

אתם מוזמנים גם להיכנס לאתר האינטרנט שליאמכיל חומר רב בם מעבר לנושאי הבקרה, בכתובת באינטרנט: www.matidavid.com.

כל תיקון, יפורסם באתר הנ״ל תחת הלשונית ״הספרים שלי״.

אני מודה לכל מי שעזר לי בכתיבת הספר, לתלמידיי שהעבירו אלי את הערותיהם, למר יאן לרון ולמר אלי מיטב. תודה רבה לחן וליאור דוד עלההגהה והעריכה של הספר.

תודה מיוחדת למשפחתי היקרה: לאישתי אינה וארבעת ילדיי - חן, ליאור, נופר, ויובל שהם לצידי לאורך כל הדרך.

מאחל לכם קריאה נעימה ובהצלחה בלימודים.

מתי דוד

מאי 2009, חיפה.

פרק 2 : דיאגראמה מלבנית של מערכות בקרה

2.1 פונק׳ תמסורת. 2.2
2.22 .2
2.3 אלגברה של דיאגראמות מלבנים.
2.4
2.5 כלל מייסון

פרק 3 : בקרה תהליך

3.43 בקר 3.5

פרק 4 : תגובות זמניות של מערכות בקרה

4.1 מבוא.

73
4.2 מערכות מסדר ראשון. 4.3 מערכות מסדר שני. 4.3
4.4 מיקום שורשים של המשוואה האופיינית.............

110

פרק 5 : התמרות לפלס

119
119
123
124
128

פרק 6 : ניתוח מערכות במישור לפלס

149 6.1 מבוא.

פרק 8 : יציבות לפי קריטריון רוט-הורוביץ R-H

Root-Locus פרק 9 : מיקום גיאומטרי של שורשים

פרק 10 : תגובת תדר העקום פולארי - ניקוויסט

10.5 עודף פאזה.

פרק 11 : תגובת תדר עקומי בודה

370
11.1 מבוא.

371
11.2 הגבר לוגריתמי. 11.3

373 11.3 חישוב הזווית בפונק׳ התמסורת........................

374
385
11.5 תרגילים בציור עקום בודה.. 11.6 11.7 מציאת פונק׳ תמסורת מתוך עקום בודה........... 395 11.8 מציאת פונק׳ תמסורת ע״״ השיפועים................ 11.703
408 11.9 עודף הגבר וזווית.
1.10 דיאגראמה מלבנית של מערכת בחוג סגור:

בכל מערכת בקרה בחוג סגור קיים אות כניסה הקובע את הערך הרצוי של המשתנה המבוקר. לדוגמא, בתנור בישול אנו קובעים את (Set-Point) טמפרטורת החימום ע״״ כפתור הטמפי שבחזית המכשיר. במזגן אנו משתמשים בשלט לקבוע את הטמפ׳ הרצויה. במערכת קיים חיישן המודד את ערכו של המשתנה המבוקש (הערך המצוי-המדוד) וע״"י השוואה בין רצוי למצוי מתקבלת השגיאה. הבקר המקבל את ערכה של השגיאה ומגיב ע״י האלמנט הסופי וכך משנה פרמטר המשפיע על תהליך, כל זאת ע״״מ שהערך המצוי ישתווה לערך הרצוי. התהליך הנ״ל מתקיים בכל רגע ורגע.
1.11 השגיאה המוחלטת (ERROR): היא ההפרש בין רצוי למצוי. השאיפה לשגיאה שתהיה תמיד קטנה. בשינוי הערך הרצוי או בהופעת הפרעה אחרת השגיאה תגדל ברגע מסוים ואנו מצפים שמערכת הבקרה תפעל ותקטין אותה למינימום האפשרי ובזמן קצר.

$$
\text { Error }=C s p-C m
$$

לדוגמא אם במערכת מיזוג הערך הרצוי ביום קיץ הוא - $24^{\circ} \mathrm{C}$ והטמפ’ הקיימת בחדר היא - $28^{\circ} \mathrm{C}$ אזי השגיאה במקרה זה תהיה: $E=24-28=-{ }^{\circ} \mathrm{C}=$. בטמפרטורת חדר נמוכה מ-24²,$~ ה ש ג י א ה ~ ח י ו ב י ת . ~ . ~$

פתרון:
א. סכימת המלבנים:

ב. תפוקה רגעית :

$$
\begin{aligned}
& K_{\text {valve }}=\frac{100}{25}=4[L P M / \mathrm{mA}] \\
& G=K p \times K_{\text {valve }}=60 \times 4=240[\mathrm{LPM} / \mathrm{mA}] \\
& H=K_{\text {transmitter }}=\frac{25-0}{100-0}=0.25[\mathrm{~mA} / \mathrm{LPM}] \\
& T=\frac{G}{1+G H}=\frac{240}{1+0.25 \times 240}=3.934[\mathrm{LPM} / \mathrm{mA}]
\end{aligned}
$$

Error $=R-K_{\text {transmitter }} \times Q=16-0.25 \times 62=0.5 \mathrm{~mA} \rightarrow$ Pout $=0.5 \mathrm{~m} \times 60=30 \mathrm{~mA}$

$$
\begin{aligned}
& T=\frac{G}{1+G H}=\frac{Q}{\text { Iset_point }}=3.934[\mathrm{LPM} / \mathrm{mA}] \rightarrow \\
& Q=3.934 \times 15=59.01 \mathrm{LPM}
\end{aligned}
$$

תרגיל 2.2.5

נתונה מערכת בקרה לחימום נוזל במיכל, את הטמפ׳ חש צמד תרמי וגוף החימום מייצר חום בהתאם להספק המושקע בו.

$$
\begin{aligned}
& V c(t)=V c_{\text {HOM }}(t)+V c_{P R V}(t)= \\
& =4 t^{2}-14 t+21+\ell^{-\frac{2}{3} \times t} \times\left[C_{1} \times \operatorname{Cos}(0.4714 \times t)+C_{2} \times \operatorname{Sin}(0.4714 \times t)\right]
\end{aligned}
$$

$$
V c(0)=0=21+C_{1} \rightarrow C_{1}=-21
$$

$$
V c^{\prime}(0)=0=-14-\frac{2}{3}(-21)+\left(0.4714 \times C_{2}\right) \rightarrow C_{2}=0
$$

$$
V c(t)=4 t^{2}-14 t+21+\ell^{-\frac{2}{3} \times t} \times[-21 \times \operatorname{Cos}(0.4714 \times t)]=
$$

$$
V c(t)=4 t^{2}-14 t+21-21 \times \ell^{-\frac{2}{3} \times t} \operatorname{Sin}\left(0.4714 \times t+90 \times \frac{\pi}{180}\right)
$$

4.4 מיקום השורשים של המשוואה האופ׳צנתת והשפעתם על התגובה:

במשוואה הדיפרנציאלית ההומוגנית של משתנה היציאה, נחליף את הנגזרות באופרטור D ונרשום אותה בצורה הבאה:

$$
\begin{aligned}
& a D^{2}+b D+c=0 \rightarrow D^{2}+2 \times \zeta \times \omega_{n} D+\omega_{n}^{2}=0 \\
& \omega_{n}=\sqrt{\frac{c}{a}}, \zeta=\frac{b}{2 \sqrt{a c}}
\end{aligned}
$$

זמן התייצבות (steady State) עד להתכנסות לגודל שגיאה נתונה:

$$
\begin{aligned}
& \left|\frac{\ell^{-\zeta \omega_{n} t s s}}{\sqrt{1-\zeta^{2}}}\right|<\frac{\operatorname{Error}(\%)}{100} \rightarrow \\
& \quad-\operatorname{Lan}\left[\left(\frac{\operatorname{Error}(\%)}{100}\right)^{2} \times\left(1-\zeta^{2}\right)\right] \\
& t_{s s}=\frac{2 \times \zeta \times \omega_{n}}{\zeta \times \omega_{n}} \\
& t_{s s}(1 \%) \simeq 5 \tau=\frac{5}{\zeta \times \omega_{n}} \\
& t_{s s}(2 \%) \simeq 4 \tau=\frac{4}{\zeta \times \omega_{n}} \\
& t_{s s}(5 \%) \simeq 3 \tau=\frac{3}{\zeta \times \omega_{n}}
\end{aligned}
$$

5.3 תכונות של התמרות לפלס:

מישור הזמן	מישור לפלס	הפעולה	
$a f_{1}(t)+b f_{2}(t)$	$a F_{1}(s)+b F_{2}(s)$	ליניאריות	A
$f(a t)$	$\frac{1}{a} F(S / a)$	שינוי קנה	B
$\ell^{-a t} f(t)$	$F(S+a)$	הזיה בתדר	C
$\left\{\begin{array}{l} f(t-a) \Leftrightarrow t>a \\ 0 \Leftrightarrow t<a \end{array}\right.$	$\ell^{-a S} F(s)$	השהייה בציר הזמן	D
$f^{\prime}(t)$	$S \times F(S)-f(0)$	נגזרת	E
$f^{\prime \prime}(t)$	$S^{2} \times F(S)-S \times f(t=0)-f^{\prime}(t=0)$	שנייה	F
$t \times f(t)$	$-F^{\prime}(S)$	הכפלה	G
$t^{2} \times f(t)$	$F^{\prime \prime}(S)$	הכפלה	H
$\int_{0}^{t} f(t) d t$	$\frac{F(S)}{S}$	אינטגרל בזמן	I
$\lim _{t \rightarrow \infty}[f(t)]=\lim _{s \rightarrow 0}[S \times F(s)]$		העסופי	J
$\lim _{t \rightarrow 0}[f(t)]=\lim _{s \rightarrow \infty}[S \times F(s)]$		$\begin{gathered} \hline \text { השרחר } \\ \hline \text { התחתי } \end{gathered}$	K

אחד הדברים הנפוצים בבקרה זה מילוי מיכל בנוזל, אם זה מים, שמן או אפילו מילוי גז. בנושא זה נצטרך להכיר משתנים חדשים שילוו אותנו לאורך המקצוע: מפלס, גובה - H : (נקרא לפעמים גם עומד) ביחידות של מטר, סנטימטר וכדי. ספיקה - Q : ביחידות מקובלות כמו ליטר לשנייה, ליטר לשעה, טון שעה וכדי. קיבול המיכל = C : ביחידות כמו של ליטר, קוב וכדי. התנגדות להרימה = R : ביחידות של ספיקה להפרש לחצים. לחץ = P : כוח ליחידת שטח, ללחץ הרבה יחידות כמו אטמוספרות, PSI,

נפתח את הנוסחה הבסיסית, הפרש הגובה של המפלס תלוי בספיקה הנכנסת ושטח
פני הנוזל A :

$$
\operatorname{Qin}(t)=A \times \frac{d h(t)}{d t}
$$

נבצע אינטגרציה על הביטוי הקודם ונקבל שהמפלס יחסי לסכום כל הנוזל שנכנס.

$$
h(t)=\frac{1}{A} \int_{0}^{t} \operatorname{Qin}(t) d t \rightarrow H(S)=\frac{1}{A} \times \frac{1}{S} \operatorname{Qin}(S)
$$

ת תרגיל
במערכת הבאה המומנט הכניסה הוא - Tin = $12[N \times m]$, נתוני המערכת הם :

$$
\begin{aligned}
& J_{1}=6\left[\frac{\mathrm{~N} \times \mathrm{m}}{\mathrm{rad} / \mathrm{sec}^{2}}\right], J_{2}=8\left[\frac{\mathrm{~N} \times \mathrm{m}}{\mathrm{rad} / \mathrm{sec}^{2}}\right], B_{1}=3.5\left[\frac{\mathrm{~N} \times \mathrm{m}}{\mathrm{rad} / \mathrm{Sec}}\right], \\
& B_{2}=B_{3}=2.5\left[\frac{\mathrm{~N} \times \mathrm{m}}{\mathrm{rad} / \mathrm{Sec}}\right], K s=0.2\left[\frac{\mathrm{~N} \times \mathrm{m}}{\mathrm{rad}}\right]
\end{aligned}
$$

א. שרטט מעגל מכני וחשמלי למערכת הנ״יל. ב. חשב את המטריצה ממנה ניתן למצוא את שתי התמסורות (הזוויות יחסית למומנט הכניסה).
ג. מצא את התמסורות ואת התגובה הזמנית.

פתרון: א. השרטוטים:

פרק 8:

8.1 יציבות - BIBO מצפים שגם התגובה תהיה מוגבלת ושהמערכת לא תגיע לערכים גבוהים ובלתי מוגבלים - מה שנקרא בשפה מקצועית Bounded Input - Bounded Output. לבדיקת יציבות מערכת יש לחקור את שורשי המשוואה האופיינית,

ניקח מספר מקרים לדוגמא:

א. קוטב בודד בחלק השמאלי של המישור הקומפלקסי : $C(S)=\frac{A}{S+5} \rightarrow C(t)=A \times \ell^{-5 t} \rightarrow C(t \rightarrow \infty)=A \times \ell^{-5 \times \infty}=0$

זוהי מערכת מסדר ראשון, מיקום הקוטב (מקום בו המכנה מתאפס) הוא בחלק השלילי של המישור הקומפלקסי בנקודה P=-5. הפתרון הזמני מכיל חזקה עם מקדם שלילי לפיכך התגובה מתכנסת לאפס בסופו של דבר.

ב. קוטב בודד בחלק הימיני של המישור הקומפלקסי:

$$
C(S)=\frac{A}{S-5} \rightarrow C(t)=A \times \ell^{5 t} \rightarrow C(t \rightarrow \infty)=A \times \ell^{5 \times \infty}=\infty
$$

המערכת מסדר ראשון, מיקום הקוטב בחלק החיובי של המישור המרוכב, הפתרון הזמני עולה במהלך הזמן. יציאת המערכת אינה מוגבלת תיאורטית.

ג. שני קטבים ממשים בחלק השמאלי של המישור המרוכב ואחד בראשית הצירים:

$$
\begin{aligned}
& C(S)=\frac{A}{S\left(S^{2}+5 S+6\right)}=\frac{A}{S(S+2)(S+3)}=\frac{C_{1}}{S}+\frac{C_{2}}{S+2}+\frac{C_{3}}{S+3} \rightarrow \\
& C(t)=C_{1}+C_{2} \times \ell^{-2 t}+C_{3} \times \ell^{-3 t} \rightarrow C(t \rightarrow \infty)=C_{1}
\end{aligned}
$$

נציב את הערך של Kc במקדמים של שורה ${ }^{2}$ ונפתור את המשוואה:

$$
1 \times S^{2}+2 \times 1=0 \rightarrow S_{1,2}= \pm \sqrt{2} j
$$

יש לנו כבר מספיק פרטים, ניגש לציור:

$$
G(S) H(S)=\frac{K(S+4)}{S(S+1)(S+2)(S+5)} \text { תרגיל 9.2.2: שרטט את המג״ש של }
$$

פתרון:
בגרף ארבעה ענפים המתחילים ב- 0, 1, 2-, 5- , אחד מהם מסתיים ב- 4- והאחרים מסתיימים בשלוש אסימפטוטותות נחשב את מרכז הכובד - נקודת המפגש של שלושת האסימפטוטות:

$$
\sigma_{D}=\frac{\sum_{i}^{n} \operatorname{Re} a l(P i)-\sum_{1}^{m} \operatorname{Re} a l(Z i)}{n-m}=\frac{0-1-2-5-(-4)}{4-1}=-\frac{4}{3}=-1.333
$$

זוויות האסימפטוטות :

$$
\phi=\left.\frac{(1+2 \times h) \times 180}{4-1}\right|_{h=0,1,2}=60^{\circ}, 180^{\circ}, 300^{\circ}=-60^{\circ}
$$

הקטעים [--

9.3 מקדם הריסון בעקומת Root Locus:

בנושא מסי 4 - ניתוח מערכות מסדר שני, הכרנו את מקדם הריסון וכיצד ערכו קובע את אופי תגובת המערכת. ראינו שעבור מקדם ריסון $<\zeta<\zeta$ < 0 המערכת נמצאת בתת ריסון דבר הגורם לתגובת יתר ותנודתיות מסוימת באות היציאה. חשיבותו של גורם הריסון לפיכך היא גבוהה ומשמעותית. בדיאגראמת רוט לוקוס ניתן למצוא את השפעתו של אותו מקדם הריסון. נסתכל על המשוואה מסדר שני ונמצא את מיקום שורשיה בריסון תת קריטי :

$$
\begin{aligned}
& S^{2}+2 \zeta \omega_{n} S+\omega_{n}^{2}=0 \rightarrow \\
& S_{1,2}=\left.\frac{-2 \zeta \omega_{n} \pm \sqrt{4 \zeta^{2} \omega_{n}^{2}-4 \omega_{n}^{2}}}{2}\right|_{0<\zeta<0}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}= \\
& =\omega_{n}\left(-\zeta \pm j \sqrt{1-\zeta^{2}}\right)=\sqrt{\left(-\zeta \omega_{n}\right)^{2}+\left(\omega_{n} \sqrt{1-\zeta^{2}}\right)^{2}} \angle \pm \tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)=
\end{aligned}
$$

$$
=\omega_{n} \angle \pm \tan ^{-1}\left(\frac{\sqrt{1-\zeta^{2}}}{\zeta}\right)
$$

היחס בין החלק הממשי לגודל הקוטב (קוסינוס של הזווית) שווה למקדם הריסון: נמדוד את הזווית יחסית לציר הממשי השלילי והמינוס $\operatorname{~נמי~} \operatorname{Cos}(\alpha)=\frac{-\zeta \omega_{n}}{\omega_{n}}=-\zeta$

$$
\operatorname{Cos}(\alpha)=\zeta \quad \text { ירד, ולכן: }
$$

כלל 4 : מצא ביטוי לגודל התמסורת (הערך המוחלט של הפונק') - | $\mid G(w) H(w)$ וחשב את גודל התמסורת עבור מספר תדרים (עבור תדירות- 0 ואינסוף זה הכרחי, אך כדאי גם תדרים נוספים).

כלל 5: מצא ביטוי להפרש המופע (הזווית של פונק׳ התמסורת) -
גודל הזוית עבור מספר תדרים (עבור- 0 ואינסוף זה הכרחי, אך כדאי גם
 הקטבים בראשית הצירים של פונק׳ התמסורת בחוג פתוח), המגדיר את זווית הכניסה של הגרף. במערכת מסוג אפס הגרף מתחיל ב- 0° במערכת מסוג אחד זווית ההתחלה היא ב- 90-, וכך הלאה. זווית ההתחלה בצורה כללית עבור מערכת מסוג K:

$$
\phi(w=0)=-K \times 90^{\circ}
$$

זווית הסיום מחושבת לפי הפרש מספר האפסים והקטבים, המוכפל

$$
\phi(w \rightarrow \infty)=(m-n-k) \times 90^{\circ}
$$

מצא את w_{x} (אם קיים) בו מתקיים: $\phi\left(w_{x}\right)=-180^{\circ}$ ואת גודל התמסורת $\phi\left(w_{Y}\right)=-90^{\circ},-270^{\circ}-$ בתדר זה. מצא את w_{Y} (אם קיים) בו מתקיים קת ואת גודל התמסורת בתדר זה.

כלל 6: צייר את העקום החל מתדר אפס ועד אינסוף, השלם את הגרף בצורה

 סימטרית עבור תדרים השליליים (מאפס ועד ל - ס-).תרגיל 10.2.2.1: (מערכת מסוג ״0״ קוטב בודד), צייר עקום ניקוויסט לפונק׳ תמסורת בחוג פתוח של מערכת מסוימת:

$$
G(S) H(S)=T_{O L}(S)=\frac{1}{S+2}
$$

במקרה זה, החישוב למפגש עם הצירים הוא מעט מסובך לניתוח אנליטי, נסתפק בפתרון הנומרי.

שרטוט העקום:

תרגיל 10.2.2.5 : (מערכת מסוג "1" בעלת קוטב ממשי), שרטט עקום ניקוויסט $G(S) H(S)=T_{O L}(S)=\frac{5}{S(S+1)}:$ לפונק, התמסורת הבאה

פתרון:

השפעת הקוטב בראשית: הזווית ההתחלתית היא ב-90-, כל הגרף מסובב ב- 90° עם כיוון השעון. עבור תדרים נמוכים התמסורת תהיה גבוהה מאוד בגלל ה S שבמכנה ויתכן שבמקרה זה העקום אינו מתחיל צמוד לציר Y. בשירטוט החלק עבור התדרים השליליים העקום ״נסגר״ ברדיוס אינסופי.

$$
\begin{aligned}
& T_{O L}(S)=\frac{6}{S(S+2)} \rightarrow \frac{3}{j w\left(j \frac{w}{2}+1\right)}=\frac{3}{-\frac{w^{2}}{2}+j w} \rightarrow \\
& \left|T_{O L}(j w)\right|=\frac{3}{|w| \sqrt{1+\left(\frac{w}{2}\right)^{2}}},\left|T_{O L}(j w=0)\right| \rightarrow \infty,\left|T_{O L}(j w \rightarrow \infty)\right|=0 \\
& \phi(j w)=-90-\tan ^{-1}\left(\frac{w}{2}\right), \phi(j w=0)=-90^{\circ}, \phi(j w \rightarrow \infty)=-180^{\circ}
\end{aligned}
$$

ד. בדיקה לפי קריטריון R-H, לשם כך יש לחשב את התמסורת הכללית :

$$
T(S)=\frac{G(S)}{1+G(S) H(S)}=\frac{\frac{K}{S(S+1)}}{1+\frac{K}{S(S+1)(S+2)(S+3)}}=\frac{K(S+2)(S+3)}{S(S+1)(S+2)(S+3)+K}=
$$

$$
=\frac{K(S+2)(S+3)}{S^{4}+6 S^{3}+11 S^{2}+6 S+K} \rightarrow
$$

$S^{4}: \quad 1 \quad 11 \quad K$
$S^{3}: 66$
$\begin{array}{lcc}S^{2}: & 10 \\ S^{1}: & 60-6 K\end{array} \quad \rightarrow \frac{60-6 K}{10}>0 \rightarrow 0<K<10$
$S^{1}: \frac{60-6 K}{10}$
$S^{0}: \quad K$

ההגבר קריטי זהה, Kc=10

תרגיל 10.5.4: נתונה מערכת הבקרה הבאה :

א. עבור המערכת צייר עקום פולארי.
ב. מהו ההגבר הקריטי על סף יציבות ? ג. עבור $K=1.5$ מה יהיה עודף הפאזה ? ד. בדוק הגבר קריטי ע״״ קריטריון ראוט - הורוביץ.

נמשיך עם מפגש עם ציר Y , נעשה זאת בצורה נומרית בעזרת המחשבון :

$$
\begin{aligned}
& \phi\left(j w_{y}\right)=-270=-180-\tan \left(\frac{w_{y}}{4}\right)-2 \tan \left(\frac{w_{y}}{3}\right)+\tan \left(\frac{w_{y}}{1}\right) \rightarrow \\
& w_{y}=4.9468[\mathrm{Rad} / \mathrm{Sec}] \\
& G\left(j w_{y}\right)=\frac{K(j w+1)}{-w^{2}(j w+4)(j w+3)^{2}}= \\
& =\frac{K(j 4.9468+1)}{-4.9468^{2}(j 4.9468+4)(j 4.9468+3)^{2}}=j 0.96856 \times 10^{-3} \mathrm{~K}
\end{aligned}
$$

נצייר את הגרף, יש לשים לב שהיות והאפס (המונה) מגיע בתדר נמוך יותר מהקטבים הוא מקטין בהתחלה את הזווית ורק בתדרים גבוהים יותר הקטבים מגדילים את הזווית עד ל- 360°.

ב.

ג. עבור $K=1.5$ עודף הפאזה: יש למצוא באיזה תדר התמסורת בערך מוחלט שווהלאחד. פתרון בצורה נומרית:

$$
\begin{aligned}
& \left|G\left(j w_{1}\right)\right|=1=\frac{\frac{1.5}{36} \sqrt{1+\left(\frac{w_{1}}{1}\right)^{2}}}{w_{1}^{2}} \sqrt{1+\left(\frac{w_{1}}{4}\right)^{2} \times\left[1+\left(\frac{w_{1}}{3}\right)^{2}\right]} \rightarrow w_{1}=0.20563[\mathrm{Rad} / \mathrm{Sec}] \\
& G\left(j w_{1}\right)=\frac{1.5(j 0.20427+1)}{-0.20427^{2}(j 0.20427+4)(j 0.20427+3)^{2}}=1 \angle-179.165 \rightarrow \\
& P M .=180-179.165=0.835^{\circ}
\end{aligned}
$$

ד. נבדוק יציבות לפי קריטריון ראוט הורובץ R-H:

$$
\begin{aligned}
& T(S)=\frac{\frac{K(S+1)}{S(S+3)}}{1+\frac{K(S+1)}{S^{2}(S+4)(S+3)^{2}}}=\frac{K S(S+1)(S+4)(S+3)}{S^{2}(S+4)(S+3)^{2}+K(S+1)}= \\
& =\frac{K S(S+1)(S+4)(S+3)}{S^{5}+10 S^{4}+33 S^{3}+36 S^{2}+K S+K} \\
& S^{5}: \quad 1 \\
& S^{4}: \quad 33 \quad K \\
& S^{5}: \quad 36 \quad K \\
& S^{5}: \quad \frac{1058.4-9 K}{29.4}=36-\frac{15}{49} K \\
& S^{29} \\
& S^{5}: \quad \frac{\left(36-\frac{15}{49} K\right) \times 0.9 K-29.4 K}{36-\frac{15}{49} K} \\
& S^{5}: \quad 0
\end{aligned}
$$

נבדוק את תחום היציבות לפי קריטריון R-H:

$$
\rightarrow\left\{\begin{array}{l}
K>0 \\
36-\frac{15}{49} K>0 \rightarrow K<117.6 \\
\left(36-\frac{15}{49} K\right) \times 0.9 K-29.4 K>0 \rightarrow 0<K<\frac{98}{9}=10.88
\end{array}\right.
$$

תרגיל 10.5.5 : נתונה מערכת בקרה בעלת משוב יחידהותמסורת בחוג פתוח,

$$
G(S) H(S)=T_{O L}(S)=\frac{10}{S^{2}(S+2)}
$$

(זאת דוגמא מסי 10.2.2.8), חשב את עודף פאזה והגבר, האם היא יציבה ? עקום ניקוויסט שהתקבל הוא:

כבר מהציור אנו רואים שלמערכת ישנה בעיה של יציבות, היות ויש שני מעגלים סגורים סביב- 1-, נמצא את עודף ההגבר ע״ מציאת גודל המחוג שבזווית 180- :

$$
\phi\left(j w_{x}\right)=-180 \rightarrow w_{x}=0 \rightarrow\left|T_{O L}(j w=0)\right| \rightarrow \infty>1 \rightarrow \text { Not_Stable! }
$$

בדומה לעקומת ניקוויסט, את עקומי בודה משרטטים על סמך פונק׳ התמסורת בחוג פתוח: $G(S) H(S)$. 11.2 הגבר לוגריתמי: נגדיר הגבר בדציבלים - (db)

$$
\begin{aligned}
& \log \text { Magnitude }=\operatorname{Lm} \\
& \operatorname{Lm}=[G(j w) H(j w)]=20 \log [|G(j w) H(j w)|]
\end{aligned}
$$

ההמרה לרישום לוגריתמי היא נוחה משתי סיבות: האחת, הטווח הגדול של הערכים היכולים להתקבל בפונק׳ המקורית לעומת ההצגה הדציבלית שהיא יותר לות מצומצמת וסיבה חשובה לא פחות היא התכונה הבאה המוכרת לנו ממתמטיקה:

$$
\log \left[\frac{A \times B}{C \times D}\right]=\log (A)+\log (B)-\log (C)-\log (D)
$$

כלומר, פעולות כפל וחילוק (בתוך הלוגריתם) הופכות לפעולות חיבור וחיסור, דבר המקִל מאוד על ניתוח המערכת, ניקח מספר ערכים להבנת הרעיון:

X	$\operatorname{Lim}(X)=20 \log [\|X\|]$
10	20 db
60	35.56 db
100	40 db
1000000	120 db
1	0
0.1	-20 db
0.02	-33.979 db

שימו לב: בהגבר מעל 1 הערך הלוגריתמי הוא חיובי. בהגבר השווהל-1 הערך הלוגריתמי-0db. בהגבר קטן מ- 1 (הנחתה) הערך הלוגריתמי שמתקבל הוא שלילי.

Z נבדוק את הערכים להגבר ולזווית בתדרים של דקדה אחת אחרי נקודת האפס ודקדה אחת לפניה:

$$
\begin{aligned}
& {\left[\sqrt { (w) ^ { 2 } } \left[w=0.1 Z \rightarrow 20 \log \left[\sqrt{1+\left(\frac{0.1 Z}{Z}\right)^{2}}\right]=0.043 \approx 0\right.\right.} \\
& \operatorname{Lm}(j w)=20 \log \left[\sqrt{1+\left(\frac{w}{Z}\right)^{2}}\right] \rightarrow\left\{\begin{array}{l}
w=Z \rightarrow=3 d b \\
w=10 Z \rightarrow 20 \log \left[\sqrt{1+\left(\frac{10 Z}{Z}\right)^{2}}\right]=20.0432 \mathrm{db}
\end{array}\right. \\
& \phi(j w)=\tan \left(\frac{w}{Z}\right)=\left\{\begin{array}{l}
w=0.1 Z \rightarrow \phi=\tan ^{-1}\left(\frac{0.1 Z}{Z}\right)=5.71^{\circ} \approx 0 \\
w=Z \rightarrow \phi=45^{\circ} \\
w=10 Z \rightarrow \phi=\tan ^{-1}\left(\frac{10 Z}{Z}\right)=84.289^{\circ} \approx 90
\end{array}\right.
\end{aligned}
$$

לפי התוצאות הניל, גודל התמסורת של האפס מתחיל לעלות בסביבות תדר האפס20db (שם ההגבר הוא 3db). מעל לתדר זה, ההגבר עולה בקצב של $w=Z$ לדקדה. הזווית מתחילה לעלות החל מדקדה אחת לפני האפס (w=0.1Z) ומסיימת את עלייתה קרוב לתדר שהוא דקדה אחת מעל התדר האפס (w=10Z).

נצייר את עקום בודה עבור מקרה זה.

ההגבר כאן מעט שונה (90 לעומת 86.52) היות ומתוך הגרף קשה למצוא במדויק ערכים. לדעתי, זו התוצאה הנכונה והיא מדויקת יותר. בכל אופן, אין לצפות לדיוק מושלם בניתוח כזה.

תרגיל 11.8.2
מצא את משוואת פונק׳ התמסורת מתוך עקום ההגבר של בודה:

פת 919:

ה״גבעה״ בעקום רומזת על פונק׳ בעלת שורשים מרוכבים. ננתח לפי שיפועים ולאחר מכן נתקן את הפונק׳ בעזרת מקדם הריסון.

$$
w_{1}=1, w_{2}=10, w_{3}=90, w_{4}=400, w_{0}=1 \rightarrow K_{0}=-10 \mathrm{db}
$$

$$
\begin{aligned}
& a_{1}=\frac{\operatorname{Lm}(w=10)-\operatorname{Lm}(w=1)}{\log \left(\frac{10}{1}\right)}=\frac{10 \mathrm{db}-(-10 \mathrm{db})}{1 \text { Decade }}=20[\mathrm{db} / \mathrm{dec}], a_{2}=0 \\
& a_{3}=\frac{\operatorname{Lm}(w=400)-\operatorname{Lm}(w=100)}{\log \left(\frac{400}{100}\right)}=\frac{-15 \mathrm{db}-(10 \mathrm{db})}{0.699 \text { Decade }}=-41.52[\mathrm{db} / \mathrm{dec}] \rightarrow-40[\mathrm{db} / \mathrm{dec}]
\end{aligned}
$$

למערכת בקרה ארבעה מרכיבים כך שהתמסורת שלה בחוג פתוח היא:

$$
T_{O L}(S)=G(S) H(S)=K \times \frac{S+Z_{1}}{S\left(S+P_{1}\right)\left(S+P_{2}\right)}
$$

במערכת קיים הגבר K , משוב יחידה ומשווה. כמו כן נתון עקום בודה , המוצג בעמוד הבא.

א. מהו עודף המופע של המערכת (הערכה).
ב. מהו עודף ההגבר ?
ג. האם המערכת יציבה ?
ד. איזה מבין העקומים ישתנה אם ישנו את הגבר הבקר שבתהליך ? ה. האם יציבות המערכת הנ״ל תלויה בהגבר K שבתהליך ?

